Artificial neural network approach for forecasting nitrogen oxides concentrations

نویسندگان

  • Mary Ann Liebert
  • Capilla Roma
  • Carmen Capilla
چکیده

This paper presents the application of feed-forward multilayer perceptron networks to forecast hourly nitrogen oxides levels 24 hours in advance. Input data were meteorological variables, average hourly traffic and nitrogen oxides hourly levels. The introduction of four periodic components (sine and cosine terms for the daily and weekly cycles) was analyzed in order to improve the models’ prediction power. The data were measured during three years at monitoring stations in Valencia (Spain) in two locations with high traffic density. The models’ evaluation criteria were the mean absolute error, the root mean square error, the mean absolute percentage error, and the correlation coefficient between observations and predictions. Comparisons of multilayer perceptron-based models proved that the insertion of the four additional seasonal input variables improved the ability of obtaining more accurate predictions, which emphasizes the importance of taking into account the seasonal character of nitrogen oxides. When using seasonal components as predictors, the root mean square error (RMSE) improves from 20.29 to 19.35 when predicting nitrogen dioxide, and from 45.07 to 42.37 when forecasting nitric oxides if the model includes seasonal components At one study location. At the other location the RMSE changes from 23.76 to 23.05 when predicting nitrogen dioxide and from 33.94 to 33.10 for the other pollutant’s forecasts. Neural networks did not require very exhaustive information about air pollutants, reaction mechanisms, meteorological parameters or traffic characteristics, and they had the ability of allowing nonlinear and complex relationships between very different predictor variables in an urban environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach

Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...

متن کامل

A Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment

In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...

متن کامل

A Reliability Approach on Redesigning the Warehouses in Supply Chain with Uncertain Parameters via Integrated Monte Carlo Simulation and Tuned Artificial Neural Network

In this paper, a reliability approach on reconfiguration decisions in a supply chain network is studied based on coupling the simulation concepts and artificial neural network. In other words, due to the limited budget for warehouse relocation in a supply chain, the failure probability is assessed for determining the robust decision for future supply chain configuration. Traditional solving ...

متن کامل

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

Using the hybrid Taguchi experimental design method – TOPSIS to identify the most suitable artificial neural networks used in energy forecasting

The use of artificial neural networks (ANN) in forecasting has many applications. Appropriate design of ANN parameters enhances the performance and accuracy of neural network models.  Most studies use a trial and error approach in setting the value of ANN parameters. Other methods used to determine the best structure of a neural network only use a single evaluation criterion to determine the ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016